找出函数的不动点--Navier-Stokes方程
##Beautiful code!
数x为函数的f的不动点(f可以代表N-S方程),如果满足f(x)=x,则称x 为函数f的不动点。 性质 f(x),f(f(x)),f(f(f(x)))…., change the x’s value if f(x)=x,then you found!
Source code
(define tolerance 0.000001)
(define (fixed-point f first-guess)
(define (close-enough? v1 v2)
(< (abs (- v1 v2)) tolerance))
(define (try guess)
(let ((next (f guess)))
(if (close-enough? guess next)
next
(try next))))
(try first-guess))
;;;solve cos(x)=x
(fixed-point cos 1.0)
;;(cos 0.7390855263619245)
;;0.7390848683867142
;;(abs (- (cos 0.7390855263619245) 0.7390855263619245))
;;6.579752103164083e-07
;;;solve y=siny+cosy x=f(x) ====> Navier Stokes equation
(fixed-point (lambda (y) (+ (sin y) (cos y))) 1.0)
;;It is what we want!!!
;;;(abs (- ((lambda (y) (+ (sin y) (cos y))) 1.2587277968014188) 1.2587277968014188))
;;6.26112570678572e-07
;;;;One method to calculate the square value
;;because x^2 = y so x = y/x (x =f (x) next we will use the fixed-point thinking) we should continue change the x's value!
(define (sqrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x)
x)))
(define (square x)
(* x x))
;;;good-enough? is similar to close-enough?
(define (good-enough? x y)
(< (abs (- (square x) y)) 0.00001))
;;x^2=y x=y/x x+x=y/x+x x=(y/x+x)/2
(define (improve guess x)
(average guess (/ x guess)))
(define (mysqrt x)
(sqrt-iter 1.0 x))
;;(mysqrt 4)
;;2.0000000929222947
;;;Use fixed-point thinking
(define (mysqrt_death_fixed x)
(fixed-point (lambda (y) (/ x y))
1.0))
;;(mysqrt_death_fixed 4)
;;;wrong !!! can not convenge!!!! why?
;;because y2= x/y1 y3=x/y2=x/(x/y1)=y1 ====>death recycle===> so we use average
(define (mysqrt_fixed x)
(fixed-point (lambda (y) (average y (/ x y)))
1.0))
(mysqrt_fixed 4)
;;;ok fine
;;2.000000000000002====>这也叫做平均阻尼定义!常用于数值计算当中
;;在不动点的搜寻中,作为帮助收敛的手段!!!!